STABILIZED FEM SOLUTION OF VARIABLE COEFFICIENT CONVECTION-DIFFUSION EQUATION
نویسندگان
چکیده
منابع مشابه
A modified diffusion coefficient technique for the convection diffusion equation
A new modified diffusi on coefficient (MDC) technique for solv ing conve ction diffusion equation is proposed. The Galerkin finite-element discretization process is applied on the modified equation rather than the original one. For a class of one-dimensional convec-tion–diffusion equations, we derive the modi fied diffusion coefficient analytically as a function of the equation coefficients and...
متن کاملA Class Of Parallel Difference Method for Solving Convection-Diffusion Equation With Variable Coefficient
Based on the concept of decomposition, a class of alternating group method is derived for solving convection-diffusion equation with variable coefficient. The method is unconditionally stable, and is suitable for parallel computing.
متن کاملConservation Laws of Variable Coefficient Diffusion–Convection Equations
We study local conservation laws of variable coefficient diffusion–convection equations of the form f(x)ut = (g(x)A(u)ux)x + h(x)B(u)ux. The main tool of our investigation is the notion of equivalence of conservation laws with respect to the equivalence groups. That is why, for the class under consideration we first construct the usual equivalence group G∼ and the extended one Ĝ∼ including tran...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Apllied Mathematics
سال: 2016
ISSN: 1311-1728,1314-8060
DOI: 10.12732/ijam.v29i3.8